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Problem

» Incomplete survey data

» Item nonresponse

» Unit nonresponse

» Failure to link records
» Panel attrition

» Missing values are most likely not MCAR

» High number of variables with any possible distribution in
survey data

= Usual approach: multiple sequential imputation
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Why?

Standard procedure needs specified model for each incomplete
variable

» Subjectivity: model specification
» Efficiency: limited resources
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Research Question

How can missing data imputation in high-dimensional (survey)
data be automated?
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How?

Sequential imputation:

P lteratively imputing each variable with missing values
conditional on all other variables

Within sequential imputation procedure:

> Automated model specification
P> Automated model selection

» Assessing models by an automated version of a visual approach
by Bondarenko and Raghunathan (2016)

» Advantages:

» Many different model types possible
» Objective procedure
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Automated Model Specification

Focus here:

» parametric models (Bayesian LM, Bayesian GLM)

» Use basis expansion of covariates
» Perform adaptive LASSO to determine model formula

» nonparametric models (CART)

» no explicite formula necessary
» all covariates are used
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Visual Approach (Bondarenko and Raghunathan 2016)

1.

Estimate response propensity score & for incomplete variable
Y
éx = P(Rx = 1|X)
] 1if Y) observed,
k 0 if Yx missing

. Estimate residual densities for observed values conditional on

propensity score:
f(Yklék, Re = 1)

3. Fit imputation model and predict missing values \A/k\X, R.=0

4. Estimate residual density for imputed values conditional on

propensity score:
F(Vi|ék, Rk = 0)
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Visual Approach Il

Comparing 7(Yk|ék, Rk = 1) (observed) and 7 (Y&, Rk = 0)
(imputed):

0.6
20.41 Densities
% |:| Observed
(@) Imputed
0.2 L mp
0.01

Residuals
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Visual Approach lll
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=- Automation: comparing via measure of similarity
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Measure of Similarity

Here: Hellinger's distance (e.g. Van der Vaart 1988, 211-12) for
each model m

Hon(F(Yi|ek, R = 1), F(Vie.mlék, Rk = 0)) =

\/1 - / \/%(Yk|ék’ Ric = 1)F (Yiem| &k, Ric = 0)d Y.

Hm(.,.) € [0,1]

Other distance measures could be used as well.
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Model Selection within Sequential Imputation

For each iteration:

1. Estimate response propensity score based on all other variables

2. Estimate density of observed values conditional on propensity
score

3. For each model specification m:

» Fit model using all covariates

» Predict plausible values for the missing values using the model

» Estimate density of plausible values conditional on propensity
score

» Estimate Hellinger distance between densities

4. Select model specification with minimal Hellinger distance and
update imputed values

5. Repeat 1 - 4 of all variables with missing values
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Preliminary Simulation

Comparing different techniques for multiple sequential imputation:

1. Bayesian linear regression models
2. Random forest

3. Model selection approach with Bayesian linear regression
model, Bayesian generalized linear regression model with log
link (for skewed outcome distributions), CART
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Data Generation
1. Draw values of X:
X ~ N(0,1)
2. Draw values of outcome variables:
Y1[X : log(Y1) ~ N(ag + a1 X + aoX?,0%,)
Ya|X, Y1 : log(Ya) ~ N(Bo + p1X + Balog(Y1) + B3XY1,0%,)
3. Generating response indicators R and Rs:

3.1
p1 = logit (65 4+ 61 X)
p2 = logit (85 + 61 X)
3.2
R, = 1 for py > uy,
0 for py < g
p_ [Lorm
0 for po < up

with uy, up ~ Unif(0,1).
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Simulation Parameters

Fixed parameters:

For log(Y1):

ag =0, a1 =0.25, ap = 0.25, 0%, =1
For log(Y>2):

Bo=—1 51 =025 3 =025 0% =1
For response indicators R; and Ry:

5§ =0=0
f=62=1

Varying Parameter:
B3 € {—0.5,0.5}

= MAR situation
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Preliminary Results

le-03

9e-04
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Imputation Methods

@ Linear Model

@ Random Forest

@ Model Selection Approach
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Limitations & Extensions

1. Simulation on higher dimensional data sets
2. Evaluation on survey data linked to administrative records

3. Currently only for incomplete continuous variables
= Bondarenko and Raghunathan (2016) provide also tools for
binary variables

4. Based on MAR assumption
= Sensitivity analysis can provide more insights

16 /26



Thank you for your attention!

Any questions?

michaf@umich.edu
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Appendix - notation |

» X be a set of fully observed variables

> Y =Yi,..., Yk be a set of continuous variables containing
missing values
» D = (X,Y) is data set with i = 1,..., n observations

» Ry denote the vector of response indicators for variable Yy,

» Yi|Rk = 1 be the subset of observed values and Yy|Rx = 0 be
the subset of missing values for variable Yy

> Y] denote the variable Yj at iteration j

> Yj;k (k €{1,...,K}) denote the set of variables

Vi, Y] 1. Y1, YL where variable Yj is excluded

» me {1,..., M} be an imputation model in a pool of models
of size M '

> Y Rk = 0 be the values replacing Y,f_l\Rk =0, predicted

by model m in iteration j
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Appendix - notation |l

» f(Yx|Rk = 1) and f(Yk|Rx = 0) denote the densities of
observed and missing values for variable Y/

» ey = P(Rx = 1|X,Yj7k) be the propensity score of all n values
for a response of variable k based on all other variables X and
YJ

» f(Yklex, Rk = 1) and f(Yk|ex, Rk = 0) define the densities of
residuals for Yy regressed on ey for the observed (R = 1) and
unobserved (R = 0) values

» Hn(f(Yx|Rk = 1), f(Yk|Rk = 0)) defines Hellinger’s distance
- quantifying the similarity of f(Yx|Rx = 1) and
f(Yi,m|Ri = 0))

» All estimates based on data be denoted by '
estimated quantities.

1~ N

on top of the
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Appendix - algorithm for sequential imputation |

For an iteration j > 1 the following steps will be performed:

1. Repeat for all k € {1,..., K} variables containing missing

values:
> 11
> 12
> 13
>
>
>
>
> 14

Estimate & = P(Rx = 1\X,Yj_k) for all n values in Yk
Estimate f(Yi|ex, R« = 1) using kernel density estimation
Repeat for all m € {1,..., M} potential imputation models:

Fit model m with Yi_l as the dependent variable and X and
Yj;k as the independent variables

Predict plausible values Yl{,mle =0 for Yi|Rk =0 using
model m

Estimate ( Y/ . lex, R« = 0) using kernel density estimation
Estimate AHeIIir’1ger distanceA .

Hn-, = H(f(Yk\ek, Rk = 1), f(YI{,m|ek’ Rk = 0))

Select model
Mopt = min Hy,
m

l
and use Y} . .

|Rk = 0 to update Y/ '|Rc =0
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Appendix - algorithm for sequential smputation Il

2. Repeat step 1) J times or until convergence, i.e.
§ =) _
|(Y;i,,'|Rk,i = 0) - (Yli,i |Rk7,~ = 0)| < ¢k, Vi, Vi with ¢, > 0,
and use imputed values from the last iteration to receive one
imputed data set.
3. Repeat steps 1)-2) £ times to receive ¢ multiply imputed data
sets.
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Appendix - pool of imputation models

» Bayesian linear models
» Bayesian generalized linear models

P> Regression trees based on bootstrap samples
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Appendix - modification 1 - rejection of samples

Only one model is used, values can be rejected or accepted, based
on a threshold Hp.

1. Repeat for all k € {1,..., K} variables containing missing
values:

1.1 Estimate response propensity scores & = P(Rx = 1|X,Yj_k)
for all n values in Y\

1.2 Estimate 7(Yi|ex, Rx = 1) (the density of residuals for Y,
regressed on & for observed values) using kernel density
estimation.

1.3 Repeat until H < Hy:

» Fit new model with Y,{_l as the dependent variable and X and

Y’ as the independent variables
» Predict plausible values Y,{|Rk = 0 for Yi|Rx = 0 using new
model
> Estimate density of residuals for Y) regressed on & for
imputed values (f(Y/|ex, R« = 0)) using kernel density
estimation
< EstimateA Hellinger distancAe '
H= H(f(Yk|ek, Rk = ].)7 f(Yé|ek, Rk = 0))
» Comnare M with H- 23/26



Appendix - modification 2 - editing of sampled values
The modified values can be computed by:

YilRe =0) - d]

. (
(Y IRk =0) = o~
Ry

with

d] = ﬁ{),k — 1,k

denoting the distance between means ('&{M and i3 ) of
F(Y{|ex, R = 0) and 7(Y|ex, Rk = 1) and

S
B — S0,k
kK8
1,k

denoting the ratio of estimated standard deviations (Sé,k and 31,k)
of 7(Y/|ex, Rk = 0) and 7(Yi|ex, Rk = 1).
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Appendix - splines of principal components and propensity

score as covariates - for continuous variables
Instead of using all covariates X, Y’ , directly

1. Estimate residuals of covariates regressed on the propensity
score:

XNék:>X*
J 2 J*
Y_kNek:>Y_k

2. Estimate principal components P* of X*,ijk

3. Use spline function of propensity score s(&x) and most
important principal components s(ls*) as covariates in
imputation model:

Yi ~ s(&) + s(P¥)
= No colinearity in covariates, only main effects necessary,

reduced dimensions, highly flexible
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