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Problem

I Incomplete survey data
I Item nonresponse
I Unit nonresponse
I Failure to link records
I Panel attrition

I Missing values are most likely not MCAR
I High number of variables with any possible distribution in

survey data

⇒ Usual approach: multiple sequential imputation
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Why?

Standard procedure needs specified model for each incomplete
variable

I Subjectivity: model specification
I Efficiency: limited resources

3 / 26



Research Question

How can missing data imputation in high-dimensional (survey)
data be automated?
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How?

Sequential imputation:

I Iteratively imputing each variable with missing values
conditional on all other variables

Within sequential imputation procedure:

I Automated model specification
I Automated model selection

I Assessing models by an automated version of a visual approach
by Bondarenko and Raghunathan (2016)

I Advantages:
I Many different model types possible
I Objective procedure
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Automated Model Specification

Focus here:

I parametric models (Bayesian LM, Bayesian GLM)
I Use basis expansion of covariates
I Perform adaptive LASSO to determine model formula

I nonparametric models (CART)
I no explicite formula necessary
I all covariates are used
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Visual Approach (Bondarenko and Raghunathan 2016)

1. Estimate response propensity score êk for incomplete variable
Yk :

êk = P(Rk = 1|X)

Rk =
{
1 if Yk observed,
0 if Yk missing

2. Estimate residual densities for observed values conditional on
propensity score:

f̂ (Yk |êk ,Rk = 1)

3. Fit imputation model and predict missing values Ŷk |X,Rk = 0
4. Estimate residual density for imputed values conditional on

propensity score:

f̂ (Ŷk |êk ,Rk = 0)
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Visual Approach II
Comparing f̂ (Yk |êk ,Rk = 1) (observed) and f̂ (Ŷk |êk ,Rk = 0)
(imputed):
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Visual Approach III
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⇒ Automation: comparing via measure of similarity
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Measure of Similarity

Here: Hellinger’s distance (e.g. Van der Vaart 1988, 211–12) for
each model m

Hm(f̂ (Yk |êk ,Rk = 1), f̂ (Ŷk,m|êk ,Rk = 0)) =√
1−

∫ √
f̂ (Yk |êk ,Rk = 1)f̂ (Ŷk,m|êk ,Rk = 0)dYk .

Hm(., .) ∈ [0, 1]

Other distance measures could be used as well.

10 / 26



Model Selection within Sequential Imputation

For each iteration:

1. Estimate response propensity score based on all other variables
2. Estimate density of observed values conditional on propensity

score
3. For each model specification m:

I Fit model using all covariates
I Predict plausible values for the missing values using the model
I Estimate density of plausible values conditional on propensity

score
I Estimate Hellinger distance between densities

4. Select model specification with minimal Hellinger distance and
update imputed values

5. Repeat 1 - 4 of all variables with missing values

11 / 26



Preliminary Simulation

Comparing different techniques for multiple sequential imputation:

1. Bayesian linear regression models
2. Random forest
3. Model selection approach with Bayesian linear regression

model, Bayesian generalized linear regression model with log
link (for skewed outcome distributions), CART
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Data Generation
1. Draw values of X :

X ∼ N(0, 1)
2. Draw values of outcome variables:

Y1|X : log(Y1) ∼ N(α0 + α1X + α2X 2, σ2
Y1)

Y2|X ,Y1 : log(Y2) ∼ N(β0 + β1X + β2log(Y1) + β3XY1, σ
2
Y2)

3. Generating response indicators R1 and R2:
3.1

p1 = logit−1(δ1
0 + δ1

1X )
p2 = logit−1(δ2

0 + δ2
1X )

3.2

R1 =
{
1 for p1 ≥ u1,

0 for p1 < u1

R2 =
{
1 for p2 ≥ u2,

0 for p2 < u2

with u1, u2 ∼ Unif (0, 1).
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Simulation Parameters

Fixed parameters:

For log(Y1):

α0 = 0, α1 = 0.25, α2 = 0.25, σ2
Y1

= 1

For log(Y2):

β0 = −1, β1 = 0.25, β2 = 0.25, σ2
Y2

= 1

For response indicators R1 and R2:

δ1
0 = δ2

0 = 0
δ1

1 = δ2
1 = 1

Varying Parameter:
β3 ∈ {−0.5, 0.5}

⇒ MAR situation
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Preliminary Results
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Limitations & Extensions

1. Simulation on higher dimensional data sets
2. Evaluation on survey data linked to administrative records
3. Currently only for incomplete continuous variables
⇒ Bondarenko and Raghunathan (2016) provide also tools for
binary variables

4. Based on MAR assumption
⇒ Sensitivity analysis can provide more insights
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Thank you for your attention!

Any questions?

michaf@umich.edu

17 / 26

mailto:michaf@umich.edu


Appendix - notation I

I X be a set of fully observed variables
I Y = Y1, . . . ,YK be a set of continuous variables containing

missing values
I D = (X,Y) is data set with i = 1, . . . , n observations
I Rk denote the vector of response indicators for variable Yk ,
I Yk |Rk = 1 be the subset of observed values and Yk |Rk = 0 be

the subset of missing values for variable Yk
I Y j

k denote the variable Yk at iteration j
I Yj

−k (k ∈ {1, . . . ,K}) denote the set of variables
Y j

1 , . . . ,Y
j
k−1,Y

j−1
k+1, . . . ,Y

j−1
K where variable Yk is excluded

I m ∈ {1, . . . ,M} be an imputation model in a pool of models
of size M

I Y j
k,m|Rk = 0 be the values replacing Y j−1

k |Rk = 0, predicted
by model m in iteration j
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Appendix - notation II

I f (Yk |Rk = 1) and f (Yk |Rk = 0) denote the densities of
observed and missing values for variable Yk

I ek = P(Rk = 1|X,Yj
−k) be the propensity score of all n values

for a response of variable k based on all other variables X and
Yj

−k
I f (Yk |ek ,Rk = 1) and f (Yk |ek ,Rk = 0) define the densities of

residuals for Yk regressed on ek for the observed (R = 1) and
unobserved (R = 0) values

I Hm(f (Yk |Rk = 1), f (Yk |Rk = 0)) defines Hellinger’s distance
- quantifying the similarity of f (Yk |Rk = 1) and
f (Yk,m|Rk = 0))

I All estimates based on data be denoted by "ˆ" on top of the
estimated quantities.
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Appendix - algorithm for sequential imputation I
For an iteration j > 1 the following steps will be performed:

1. Repeat for all k ∈ {1, . . . ,K} variables containing missing
values:
I 1.1 Estimate êk = P(Rk = 1|X, Yj

−k) for all n values in Yk

I 1.2 Estimate f̂ (Yk |ek , Rk = 1) using kernel density estimation
I 1.3 Repeat for all m ∈ {1, . . . , M} potential imputation models:

I Fit model m with Y j−1
k as the dependent variable and X and

Yj
−k as the independent variables

I Predict plausible values Y j
k,m|Rk = 0 for Yk |Rk = 0 using

model m
I Estimate f̂ (Y j

k,m|ek , Rk = 0) using kernel density estimation
I Estimate Hellinger distance

Ĥm = H(f̂ (Yk |ek , Rk = 1), f̂ (Y j
k,m|ek , Rk = 0))

I 1.4 Select model
mopt = min

m
Ĥm

and use Y j
k,mopt

|Rk = 0 to update Y j−1
k |Rk = 0
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Appendix - algorithm for sequential smputation II

2. Repeat step 1) J times or until convergence, i.e.
|(Y j

k,i |Rk,i = 0)− (Y j−1
k,i |Rk,i = 0)| < ck ,∀k , ∀i with ck > 0,

and use imputed values from the last iteration to receive one
imputed data set.

3. Repeat steps 1)-2) ` times to receive ` multiply imputed data
sets.
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Appendix - pool of imputation models

I Bayesian linear models
I Bayesian generalized linear models
I Regression trees based on bootstrap samples
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Appendix - modification 1 - rejection of samples
Only one model is used, values can be rejected or accepted, based
on a threshold H0.

1. Repeat for all k ∈ {1, . . . ,K} variables containing missing
values:
1.1 Estimate response propensity scores êk = P(Rk = 1|X,Yj

−k)
for all n values in Yk

1.2 Estimate f̂ (Yk |ek ,Rk = 1) (the density of residuals for Yk
regressed on êk for observed values) using kernel density
estimation.

1.3 Repeat until Ĥ < H0:
I Fit new model with Y j−1

k as the dependent variable and X and
Yj

−k as the independent variables
I Predict plausible values Y j

k |Rk = 0 for Yk |Rk = 0 using new
model

I Estimate density of residuals for Yk regressed on êk for
imputed values (f̂ (Y j

k |ek , Rk = 0)) using kernel density
estimation

I Estimate Hellinger distance
Ĥ = H(f̂ (Yk |ek , Rk = 1), f̂ (Y j

k |ek , Rk = 0))
I Compare Ĥ with H0
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Appendix - modification 2 - editing of sampled values
The modified values can be computed by:

(Y j∗
k |Rk = 0) = (Y j

k |Rk = 0)− d̂ j
k

R̂ j
k

with
d̂ j

k = µ̂j
0,k − µ̂1,k

denoting the distance between means (µ̂j
0,k and µ̂1,k) of

f̂ (Y j
k |ek ,Rk = 0) and f̂ (Yk |ek ,Rk = 1) and

R̂ j
k =

Ŝ j
0,k

Ŝ1,k

denoting the ratio of estimated standard deviations (Ŝ j
0,k and Ŝ1,k)

of f̂ (Y j
k |ek ,Rk = 0) and f̂ (Yk |ek ,Rk = 1).
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Appendix - splines of principal components and propensity
score as covariates - for continuous variables

Instead of using all covariates X,Yj
−k directly

1. Estimate residuals of covariates regressed on the propensity
score:

X ∼ êk ⇒ X∗

Yj
−k ∼ êk ⇒ Yj∗

−k

2. Estimate principal components P̂∗ of X∗,Yj∗
−k

3. Use spline function of propensity score s(êk) and most
important principal components s(P̂∗) as covariates in
imputation model:

Yk ∼ s(êk) + s(P̂∗)
⇒ No colinearity in covariates, only main effects necessary,
reduced dimensions, highly flexible
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